Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Diagnostics (Basel) ; 13(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832217

RESUMO

Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of disorders with progressive loss of photoreceptor and pigment epithelial function. Nineteen unrelated Polish probands clinically diagnosed with nonsyndromic RP were recruited to this study. We used whole-exome sequencing (WES) to identify potential pathogenic gene variants in molecularly undiagnosed RP patients, as a molecular re-diagnosis after having performed targeted NGS in the past. Targeted NGS allowed for identification of the molecular background in only 5 out of 19 patients. Fourteen patients who remained unsolved despite the targeted NGS were subjected to WES. WES revealed potentially causative variants in RP-related genes in another 12 patients. Together, NGS methods revealed the coexistence of causal variants affecting distinct RP genes in 17 out of 19 RP families, with a very high efficiency of 89%. With the improvement of NGS methods, including higher sequencing depth, broader target enrichment, and better bioinformatic analysis capabilities, the ratio of identified causal gene variants has significantly increased. Therefore, it is important to consider repeating high-throughput sequencing analysis in those patients in whom the previously performed NGS did not reveal any pathogenic variants. The study confirmed the efficiency and clinical utility of re-diagnosis with WES in molecularly undiagnosed RP patients.

2.
J Appl Genet ; 64(1): 89-104, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36369640

RESUMO

Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophies and the most frequent cause of congenital blindness in children. To date, 25 genes have been implicated in the pathogenesis of this rare disorder. Performing an accurate molecular diagnosis is crucial as gene therapy is becoming available. This study aimed to report the molecular basis of Leber congenital amaurosis, especially novel and rare variants in 27 Polish families with a clinical diagnosis of LCA fully confirmed by molecular analyses. Whole exome sequencing or targeted next-generation sequencing (NGS) of inherited retinal dystrophies-associated (IRD) genes was applied to identify potentially pathogenic variants. Bidirectional Sanger sequencing and quantitative PCR (qPCR) were carried out for validation and segregation analysis of the variants identified within the families. We identified 28 potentially pathogenic variants, including 11 novel, in 8 LCA genes: CEP290, CRB1, GUCY2D, NMNAT1, RPGRIP1, CRX, LRAT1, and LCA5. This study expands the mutational spectrum of the LCA genes. Moreover, these results, together with the conclusions from our previous studies, allow us to point to the most frequently mutated genes and variants in the Polish cohort of LCA patients.


Assuntos
Amaurose Congênita de Leber , Nicotinamida-Nucleotídeo Adenililtransferase , Distrofias Retinianas , Criança , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/diagnóstico , Polônia , Análise Mutacional de DNA , Mutação , Sequenciamento de Nucleotídeos em Larga Escala , Linhagem , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Antígenos de Neoplasias/genética
3.
Front Mol Biosci ; 10: 1285790, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161384

RESUMO

Background: Cranioectodermal dysplasia (CED) is a skeletal autosomal recessive ciliopathy. The characteristic clinical features of CED are facial dysmorphisms, short limbs, narrow thorax, brachydactyly, ectodermal abnormalities, and renal insufficiency. Thus far, variants in six genes are known to be associated with this disorder: WDR35, IFT122, IFT140, IFT144, IFT52, and IFT43. Objective: The goal of this study was to perform cilium phenotyping in human urine-derived renal epithelial cells (hURECs) from a CED patient diagnosed with second-stage chronic kidney disease (CKD) and three unrelated and unaffected pediatric controls. Methods: Genetic analysis by WDR35 screening was performed in the affected individual. Cilium frequency and morphology, including cilium length, height, and width, were evaluated by immunofluorescence (IF) experiments in hURECs using two markers visualizing the ciliary axoneme (Acet-Tub and ARL13B) and the base of the cilium (PCNT). The IF results were analyzed using a confocal microscope and IMARIS software. Results: WDR35 analysis revealed the presence of a known nonsense p. (Leu641*) variant and a novel missense variant p. (Ala1027Thr). Moreover, comparative genomic hybridization analysis showed that the patient carries a microdeletion on chromosome 7q31.1. Ciliary phenotyping performed on hURECs showed morphological differences in the patient's cilia as compared to the three controls. The cilia of the CED patient were significantly wider and longer. Conclusion: The obtained results suggest that CED-related second-stage CKD might be associated with cilia abnormalities, as identified in renal epithelial cells from a CED patient harboring variants in WDR35. This study points out the added value of hURECs in functional testing for ciliopathies.

4.
Front Genet ; 13: 931822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873489

RESUMO

Ciliopathies are rare congenital disorders, caused by defects in the cilium, that cover a broad clinical spectrum. A subgroup of ciliopathies showing significant phenotypic overlap are known as skeletal ciliopathies and include Jeune asphyxiating thoracic dysplasia (JATD), Mainzer-Saldino syndrome (MZSDS), cranioectodermal dysplasia (CED), and short-rib polydactyly (SRP). Ciliopathies are heterogeneous disorders with >187 associated genes, of which some genes are described to cause more than one ciliopathy phenotype. Both the clinical and molecular overlap make accurate diagnosing of these disorders challenging. We describe two unrelated Polish patients presenting with a skeletal ciliopathy who share the same compound heterozygous variants in IFT140 (NM_014,714.4) r.2765_2768del; p.(Tyr923Leufs*28) and exon 27-30 duplication; p.(Tyr1152_Thr1394dup). Apart from overlapping clinical symptoms the patients also show phenotypic differences; patient 1 showed more resemblance to a Mainzer-Saldino syndrome (MZSDS) phenotype, while patient 2 was more similar to the phenotype of cranioectodermal dysplasia (CED). In addition, functional testing in patient-derived fibroblasts revealed a distinct cilium phenotyps for each patient, and strikingly, the cilium phenotype of CED-like patient 2 resembled that of known CED patients. Besides two variants in IFT140, in depth exome analysis of ciliopathy associated genes revealed a likely-pathogenic heterozygous variant in INTU for patient 2 that possibly affects the same IFT-A complex to which IFT140 belongs and thereby could add to the phenotype of patient 2. Taken together, by combining genetic data, functional test results, and clinical findings we were able to accurately diagnose patient 1 with "IFT140-related ciliopathy with MZSDS-like features" and patient 2 with "IFT140-related ciliopathy with CED-like features". This study emphasizes that identical variants in one ciliopathy associated gene can lead to a variable ciliopathy phenotype and that an in depth and integrated analysis of clinical, molecular and functional data is necessary to accurately diagnose ciliopathy patients.

5.
Am J Med Genet A ; 188(10): 3071-3077, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35875935

RESUMO

Cranioectodermal dysplasia (CED) is rare heterogeneous condition. It belongs to a group of disorders defined as ciliopathies and is associated with defective cilia function and structure. To date six genes have been associated with CED. Here we describe a 4-year-old male CED patient whose features include dolichocephaly, multi-suture craniosynostosis, epicanthus, frontal bossing, narrow thorax, limb shortening, and brachydactyly. The patient presented early-onset chronic kidney disease and was transplanted at the age of 2 years and 5 months. At the age of 3.5 years a retinal degeneration was diagnosed. Targeted sequencing by NGS revealed the presence of compound heterozygous variants in the WDR35 gene. The variants are a novel missense change in exon 9 p.(Gly303Arg) and a previously described nonsense variant in exon 18 p.(Leu641*). Our findings suggest that patients with WDR35 defects may be at risk to develop early-onset retinal degeneration. Therefore, CED patients with pathogenic variation in this gene should be assessed at least once by the ophthalmologist before the age of 4 years to detect early signs of retinal degeneration.


Assuntos
Craniossinostoses , Falência Renal Crônica , Distrofias Retinianas , Osso e Ossos/anormalidades , Pré-Escolar , Craniossinostoses/complicações , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Proteínas do Citoesqueleto/genética , Nanismo , Displasia Ectodérmica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mutação , Osteocondrodisplasias , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética
6.
Front Pediatr ; 10: 834064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281231

RESUMO

Sensenbrenner syndrome, also known as cranioectodermal dysplasia (CED), is a rare ciliopathy clinically characterized by congenital craniofacial, skeletal, and ectodermal defects. Chronic kidney and liver insufficiency are also present in this disorder. Cranioectodermal dysplasia is an autosomal recessive and heterogeneous genetic disease. Six genes (IFT122, WDR35, IFT140, IFT43, IFT52, and WDR19) are known to be associated with this syndrome. Until 2021 more than 70 patients have been reported with CED, however, an orthotopic liver transplantation has been reported only in one case. Here, we present a case report of sequential liver-after-kidney transplantation in a male patient affected by CED. The kidney and liver transplantation was performed at the age of 7 and 12 years, respectively. Patients with Sensenbrenner syndrome require a multidisciplinary medical management and should regularly be followed-up by hepatologists and nephrologists, as the liver and kidney diseases are the major cause of morbidity and mortality.

7.
Am J Med Genet A ; 188(2): 642-647, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773354

RESUMO

Aniridia is usually an autosomal dominant, rare disorder characterized by a variable degree of hypoplasia or the absence of iris tissue, with additional ocular abnormalities. Pathogenic variants in the PAX6 gene are associated with aniridia in most patients. However, in up to 30% of individuals, disease results from 11p13 chromosomal rearrangements. Here we present a patient with a clinical diagnosis of partial aniridia born to consanguineous Polish parents. The parents were asymptomatic and ophthalmologically normal. We performed PAX6 sequencing, array comparative genomic hybridization, quantitative real-time PCR, and whole genome sequencing. aCGH revealed a homozygous deletion of the DCDC1 gene fragment in the patient. The same, but heterozygous deletion, was detected in each of the patient's asymptomatic parents and brother. In the presented family, the signs and symptoms of aniridia are observed only in the homozygous proband. Whole genome sequencing analysis was performed to determine other possible causes of the disease and did not detect any additional or alternative potentially pathogenic variant. We report a novel homozygous deletion located in the 11p13 region, which does not include the PAX6 gene or any known PAX6 enhancers. To our best knowledge, this is the first reported case of a patient presented with isolated aniridia carrying a homozygous microdeletion downstream of the PAX6 gene.


Assuntos
Aniridia , Proteínas do Olho , Aniridia/diagnóstico , Aniridia/genética , Hibridização Genômica Comparativa , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Homozigoto , Humanos , Masculino , Fator de Transcrição PAX6/genética , Linhagem , Deleção de Sequência
8.
Am J Med Genet A ; 185(4): 1195-1203, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421337

RESUMO

Cranioectodermal dysplasia (CED) is a rare autosomal recessive disorder primarily characterized by craniofacial, skeletal, and ectodermal abnormalities. CED is a chondrodysplasia, which is part of a spectrum of clinically and genetically heterogeneous diseases that result from disruptions in cilia. Pathogenic variants in genes encoding components of the ciliary transport machinery are known to cause CED. Intra- and interfamilial clinical variability has been reported in a few CED studies and the findings of this study align with these observations. Here, we report on five CED patients from four Polish families with identical compound heterozygous variants [c.1922T>G p.(Leu641Ter) and c.2522A>T; p.(Asp841Val)] in WDR35. The frequent occurrence of both identified changes in Polish CED families suggests that these variants may be founder mutations. Clinical evaluation of the CED patients revealed interfamilial clinical variability among the patients. This includes differences in skeletal and ectodermal features as well as variability in development, progression, and severity of renal and liver insufficiency. This is the first report showing significant interfamilial clinical variability in a series of CED patients from unrelated families with identical compound heterozygous variants in WDR35. Our findings strongly indicate that other genetic and non-genetic factors may modulate the progression and expression of the patients' phenotypes.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/genética , Proteínas do Citoesqueleto/genética , Displasia Ectodérmica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Osso e Ossos/patologia , Criança , Pré-Escolar , Cílios/genética , Cílios/patologia , Craniossinostoses/epidemiologia , Craniossinostoses/patologia , Displasia Ectodérmica/epidemiologia , Displasia Ectodérmica/patologia , Feminino , Humanos , Lactente , Masculino , Mutação/genética , Linhagem , Fenótipo , Polônia/epidemiologia
9.
Am J Med Genet A ; 185(1): 250-255, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33111437

RESUMO

Anophthalmia and microphthalmia (A/M) represent severe developmental ocular malformations, corresponding, respectively, to absent eyeball or reduced size of the eye. Both anophthalmia and microphthalmia may occur in isolation or as part of a syndrome. Genetic heterogeneity has been demonstrated, and many genes have been reported to be associated with A/M. The advances in high-throughput sequencing have proven highly effective in defining the molecular basis of A/M. Nevertheless, there are still many patients with unsolved genetic background of the disease, who pose a significant challenge in the molecular diagnostics of A/M. Here we describe a family, with three males affected with the non-syndromic A/M. Whole exome-sequencing performed in Patient 1, revealed the presence of a novel probably pathogenic variant c.734A>G, (p.[Tyr245Cys]) in the PORCN gene. Pedigree analysis and segregation of the identified variant in the family confirmed the X-linked recessive pattern of inheritance. This is the first report of X-linked recessive non-syndromic A/M. Until now, pathogenic variants in the PORCN gene have been identified in the patients with Goltz syndrome, but they were inherited in X-linked dominant mode. The ocular phenotype is the only finding observed in the patients, which allows to exclude the diagnosis of Goltz syndrome.


Assuntos
Aciltransferases/genética , Anoftalmia/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Microftalmia/genética , Adulto , Anoftalmia/complicações , Anoftalmia/patologia , Pré-Escolar , Exoma/genética , Feminino , Hipoplasia Dérmica Focal/genética , Hipoplasia Dérmica Focal/patologia , Genes Recessivos/genética , Genes Ligados ao Cromossomo X/genética , Heterogeneidade Genética , Humanos , Lactente , Masculino , Microftalmia/complicações , Microftalmia/patologia , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma
10.
J Appl Genet ; 62(1): 107-113, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33131036

RESUMO

Auriculocondylar syndrome (ACS) is an ultra-rare disorder that arises from developmental defects of the first and second pharyngeal arches. Three subtypes of ACS have been described so far, i.e., ACS1 (MIM: 602483), ACS2 (MIM: 600810), and ACS3 (MIM: 131240). The majority of patients, however, are affected by ACS2, which results from the mutations in the PLCB4 gene. Herein, we have described an 8-year-old male patient presenting with ACS2 and summarized the molecular and phenotypic spectrum of the syndrome. We have also compared the clinical features of our case to three other previously described cases (one sporadic and two familial) harboring the same heterozygous missense variant c.1862G>A, p.Arg621His in the PLCB4 gene. The mutation was detected using whole-exome sequencing (WES). Due to low coverage of WES and suspicion of somatic mosaicism, the variant was additionally reassessed by deep targeted next-generation sequencing panel of genes related to the craniofacial disorders, and next confirmed by Sanger sequencing. ACS2 presents high intra- and interfamilial phenotypic heterogeneity that impedes reaching an exact clinical and molecular diagnosis. Thus, describing additional cases, carrying even the known mutation, but resulting in variable phenotypes, is essential for better understanding of such orphan Mendelian diseases.


Assuntos
Otopatias/genética , Orelha/anormalidades , Criança , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Fosfolipase C beta/genética
12.
Front Genet ; 11: 580477, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262786

RESUMO

BACKGROUND: Defects in the development of the first and second pharyngeal arches and their derivatives result in abnormal formation of the craniofacial complex, consequently giving rise to facial dysostoses (FDs). FDs represent a group of rare and highly heterogeneous disease entities that encompass mandibulofacial dysostoses (MFDs) with normal extremities and acrofacial dysostoses (AFDs) with limb anomalies in addition to craniofacial defects. METHODS: We examined 11 families with variable clinical symptoms of FDs, in most of which only one member was affected. We applied two custom gene panels-first comprising 37 genes related to the genetic disorders of craniofacial development such as FDs (On-Demand AmpliSeq Thermo Fisher Scientific gene panel with two primer pools) and second composed of 61 genes and 11 single nucleotide variants (SNVs) known to be involved in the development of skull malformations, mainly in the form of craniosynostoses (SureSelect Agilent Technologies). Targeted next-generation sequencing (NGS) was performed using the Ion Torrent S5 platform. To confirm the presence of each detected variant, we have analyzed a genomic region of interest using Sanger sequencing. RESULTS: In this paper, we summarized the results of custom targeted gene panel sequencing in the cohort of sixteen patients from 11 consecutive families affected by distinct forms of FDs. We have found three novel pathogenic variants in the TCOF1 gene-c.2145_2148dupAAAG p.(Ser717Lysfs ∗42), c.4370delA p.(Lys1457Argfs ∗118), c.83G>C p.(Arg28Pro) causing Treacher Collins syndrome type 1, two novel missense variants in the EFTUD2 gene-c.491A>G p.(Asp164Gly) and c.779T>A p.(Ile260Asn) in two female patients affected by acrofacial dysostosis Guion-Almeida type, one previously reported-c.403C>T (p.Arg135Cys), as well as one novel missense variant-c.128C>T p.(Pro43Leu) in the DHODH gene in the male patient with Miller syndrome and finally one known pathogenic variant c.574G>T p.(Glu192∗) in the SF3B4 gene in the patient with Nager syndrome. CONCLUSION: Our study confirms the efficiency and clinical utility of the targeted gene panel sequencing and shows that this strategy is suitable and efficient in the molecular screening of variable forms of FDs.

13.
Am J Med Genet A ; 182(10): 2417-2425, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32804427

RESUMO

The ciliary chondrodysplasias represent a group of clinically and genetically heterogeneous disorders that affect skeleton development. Cilia are organelles that project from the surface of many cell types and play an important role during prenatal and postnatal human development. Cranioectodermal dysplasia (Sensenbrenner syndrome, CED) is a ciliopathy primarily characterized by craniofacial, skeletal, and ectodermal abnormalities. To date six genes have been associated with CED: IFT122, WDR35, WDR19, IFT140, IFT43, and IFT52. Prenatal diagnosis of CED is challenging, and genetic testing can facilitate making a correct diagnosis. Here, we report on a family with two male siblings affected by CED: a 3.5 year-old patient and his 2 year-old brother. Molecular analysis of the proband at 1 year of age revealed compound heterozygous variants in WDR35: c.3G>A [p.(Met1-Ala30delinsMetfsTer4)] and c.2522A>T [p.(Asp841Val)]. Ultrasound examination during the second pregnancy revealed an increased nuchal translucency of 4.5 mm and a hypoplastic nasal bone at 12 weeks of gestation. Prenatal diagnostic testing was offered because of an increased risk for chromosomal abnormalities and recurrence risk for CED. Prenatal genetic analysis of a chorionic villus sample detected the WDR35 variants previously identified in the elder brother. This is the first report of a prenatal genetic diagnosis in CED.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/diagnóstico , Proteínas do Citoesqueleto/genética , Displasia Ectodérmica/diagnóstico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Diagnóstico Pré-Natal , Osso e Ossos/patologia , Pré-Escolar , Craniossinostoses/genética , Craniossinostoses/patologia , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Polônia/epidemiologia
14.
Birth Defects Res ; 112(10): 740-748, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32529787

RESUMO

OBJECTIVE: Craniosynostosis (CS) is the premature fusion of the cranial sutures, occurring either in isolated or syndromic form. Syndromic CS, which was described in over 180 genetic syndromes, accounts for 15-30% of all CS cases and usually originates from mutations within the FGFR1, FGFR2, FGFR3, and TWIST1 genes. However, causative alterations in other genes, or rarely copy number variations (CNVs) were also reported. In this article, we describe a patient with Noonan-like facial dysmorphism accompanied by intellectual disability and compound CS, involving coronal, sagittal, and squamous sutures. METHODS: We applied karyotyping, copy number variations analysis using array comparative genomic hybridization, and microarray-based genes expresion analysis. RESULTS: We have shown that the index carried a large and rare heterozygous deletion, which encompassed 12.782 Mb and mapped to a chromosomal region of 7q32.3-q35 (HG38 - chr7:131837067-144607071). The aberration comprised 109 protein-coding genes, including BRAF, that encodes serine/threonine-protein kinase B-Raf, being a part of the RAS/MAPK signaling pathway. DISCUSSION: The RAS/MAPK pathway plays an essential role in human development; hence, its dysregulation not surprisingly results in severe congenital anomalies, such as phenotypically overlapping syndromes termed RASopathies. To our best knowledge, we report here the first CNV causing haploinsufficiency of BRAF, resulting in dysregulation of the RAS/MAPK cascade, and consequently, in the phenotype observed in our patient. To conclude, with this report, we have pointed to the involvement of the RAS/MAPK signaling pathway in CS development. Moreover, we have shown that the molecular analysis based on both DNA and RNA profiling, undoubtedly constitutes a comprehensive diagnostic and research strategy for elucidating a cause of genetic diseases.


Assuntos
Craniossinostoses , Deficiência Intelectual , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Humanos , Mutação
15.
Jpn J Ophthalmol ; 64(2): 134-139, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016663

RESUMO

PURPOSE: Genetic analysis of two siblings with complex microphthalmia, with clinically healthy parents. STUDY DESIGN: Clinical and experimental. METHODS: The patients underwent a detailed ophthalmic evaluation, including visual acuity, fundus examination, gonioscopy, ultrasound examination, and optical coherence tomography. Lensectomy with anterior vitrectomy was conducted in both patients. Additionally, in patient p1, electroencephalography analysis was performed. Genetic analysis was carried out using array comparative genomic hybridization (aCGH) and whole exome sequencing (WES). Bidirectional Sanger sequencing was conducted for validation and segregation analysis of the identified variant in the family. RESULTS: The aCGH results were normal. The heterozygous PAX6 variant c.52G>C (p.Gly18Arg) was identified in the proband (p1) through WES analysis. Sanger sequencing of exon 5 of PAX6 confirmed the presence of the variant in the other affected sibling (patient p2) but did not allow for identification of the variant in the parents' DNA isolated from leukocytes and buccal cells. CONCLUSIONS: The description of the variant in PAX6 in two siblings with clinically healthy parents who are negative for the mutation in DNA from leukocytes and buccal cells represents the possibility of parental gonadal mosaicism. Detection of germ cell mosaicism in the parents is essential to provide genetic counseling to the family regarding the risk of reoccurrence. Furthermore, we also report a pathogenic variant in PAX6 that to our knowledge has not so far been reported in patients with partial aniridia and therefore broadens the spectrum of the variants associated with aniridia.


Assuntos
Anormalidades Múltiplas , Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/genética , Microftalmia/genética , Mutação , Fator de Transcrição PAX6/genética , Pais , Segmento Anterior do Olho/parasitologia , Criança , DNA/genética , Análise Mutacional de DNA , Éxons , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/metabolismo , Feminino , Heterozigoto , Humanos , Microftalmia/diagnóstico , Microftalmia/metabolismo , Linhagem , Tomografia de Coerência Óptica/métodos
16.
Orphanet J Rare Dis ; 15(1): 36, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007091

RESUMO

BACKGROUND: Sensenbrenner syndrome, which is also known as cranioectodermal dysplasia (CED), is a rare, autosomal recessive ciliary chondrodysplasia characterized by a variety of clinical features including a distinctive craniofacial appearance as well as skeletal, ectodermal, liver and renal anomalies. Progressive renal disease can be life-threatening in this condition. CED is a genetically heterogeneous disorder. Currently, variants in any of six genes (IFT122, WDR35, IFT140, IFT43, IFT52 and WDR19) have been associated with this syndrome. All of these genes encode proteins essential for intraflagellar transport (IFT) a process that is required for cilium assembly, maintenance and function. Intra- and interfamilial clinical variability has been reported in CED, which is consistent with CED's genetic heterogeneity and is indicative of genetic background effects. RESULTS: Two male CED patients from two unrelated Polish families were included in this study. Clinical assessment revealed distinctive clinical features of Sensenbrenner syndrome, such as dolichocephaly, shortening of long bones and early onset renal failure. Ectodermal anomalies also included thin hair, short and thin nails, and small teeth in both patients. Next generation sequencing (NGS) techniques were performed in order to determine the underlying genetic cause of the disorder using whole exome sequencing (WES) for patient 1 and a custom NGS-based panel for patient 2. Subsequent qPCR and duplex PCR analysis were conducted for both patients. Genetic analyses identified compound heterozygous variants in the IFT140 gene in both affected individuals. Both patients harbored a tandem duplication variant p.Tyr1152_Thr1394dup on one allele. In addition, a novel missense variant, p.(Leu109Pro), and a previously described p.(Gly522Glu) variant were identified in the second allele in patients 1 and 2, respectively. Segregation analysis of the variants was consistent with the expected autosomal recessive disease inheritance pattern. Both patients had severe renal failure requiring kidney transplantation in early childhood. CONCLUSION: The finding of compound heterozygous IFT140 mutations in two unrelated CED patients provide further evidence that IFT140 gene mutations are associated with this syndrome. Our studies confirm that IFT140 changes in patients with CED are associated with early onset end-stage renal disease. Moreover, this report expands our knowledge of the clinical- and molecular genetics of Sensenbrenner syndrome and it highlights the importance of multidisciplinary approaches in the care of CED patients.


Assuntos
Craniossinostoses , Displasia Ectodérmica , Falência Renal Crônica , Osso e Ossos/anormalidades , Proteínas de Transporte/genética , Pré-Escolar , Displasia Ectodérmica/genética , Humanos , Falência Renal Crônica/genética , Masculino , Mutação/genética , Polônia
17.
Birth Defects Res ; 110(4): 376-381, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134781

RESUMO

BACKGROUND: Sensenbrenner syndrome (cranioectodermal dysplasia, CED) is a very rare autosomal recessive ciliopathy first described by Judith Sensenbrenner in 1975. CED is a complex disorder characterized by craniofacial, skeletal, and ectodermal abnormalities. The clinical symptoms are variable and the CED phenotype may present intrafamilial and interfamilial differences. Sensenbrenner syndrome belongs to a group of ciliary chondrodysplasias and is a genetically heterogeneous disease. Mutations in six genes: IFT122, WDR35, IFT43, WDR19, IFT52, and IFT140 have been associated with this disorder. All known CED genes encode proteins that are part of the intraflagellar transport complex, which plays an important role in the assembly and maintenance of cilia. CASE: We report a on 2-year-old male patient affected by Sensenbrenner syndrome. Dysmorphic features included short stature with rhizomelic shortening of limbs, short fingers, narrow chest, high forehead, epicanthal folds, telecanthus, broad nasal bridge, low-set ears, sparse hair, and widely space teeth. Craniosynostosis was surgically corrected at the age of 4 months. The patient presented chronic renal disease. Nephrologic picture showed early stages of nephronophthisis. Psychomotor development was apparently normal. Molecular analysis of the affected individual revealed compound heterozygosity for a novel nonsense p.(Arg113*) and a missense p.(Asp841Val) variant in the WDR35 gene. CONCLUSIONS: The observations of the CED patient in this study provide additional clinical data and expand the molecular spectrum of Sensenbrenner syndrome. Moreover, the two variants identified in the proband provide further evidence for the WDR35 mutations as the most common cause of this rare syndrome.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/genética , Displasia Ectodérmica/genética , Mutação de Sentido Incorreto , Proteínas , Substituição de Aminoácidos , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Pré-Escolar , Craniossinostoses/metabolismo , Proteínas do Citoesqueleto , Displasia Ectodérmica/metabolismo , Proteínas Hedgehog , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino
18.
Am J Med Genet A ; 173(8): 2280-2283, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28586144

RESUMO

Jalili syndrome is a rare disorder inherited in an autosomal recessive pattern manifesting as a combination of cone-rod dystrophy including progressive loss of visual acuity, color blindness, photophobia, and amelogenesis imperfecta with hypoplastic, immature, or hypocalcified dental enamel. It is caused by mutations in CNNM4, which encodes the ancient conserved domain protein 4. Here we report three brothers with Jalili syndrome and muscle overgrowth of the legs. Myopathic changes were found in needle electromyography. Mutational analysis showed in all three brothers a novel likely pathogenic homozygous missense substitution in exon 1 (c.1076T>C, p.(Leu359Pro)) of CNNM4. Both parents were carriers for the variant. In order to exclude other causative variants that could modify the patients' phenotype we performed exome sequencing and MLPA analysis of the DMD gene in Patient 1. These analyses did not identify any additional variants. Our results expand the mutational spectrum associated with Jalili syndrome and suggest that mild myopathy with muscle overgrowth of the legs could be a newly identified manifestation of the disorder.


Assuntos
Amelogênese Imperfeita/genética , Proteínas de Transporte de Cátions/genética , Distrofias de Cones e Bastonetes/genética , Retinose Pigmentar/genética , Amelogênese Imperfeita/fisiopatologia , Distrofias de Cones e Bastonetes/fisiopatologia , Consanguinidade , Distrofina/genética , Eletromiografia , Éxons , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Retinose Pigmentar/fisiopatologia , Acuidade Visual/genética
19.
Am J Med Genet A ; 173(5): 1364-1368, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28332779

RESUMO

Sensenbrenner syndrome (cranioectodermal dysplasia, CED) is a very rare autosomal recessive ciliopathy. Cranioectodermal dysplasia is characterized by craniofacial, skeletal, and ectodermal abnormalities. About 50 patients have been described to date. Sensenbrenner syndrome belongs to a group of ciliary chondrodysplasias and is a genetically heterogeneous disorder. Mutations in five genes: IFT122, WDR35, IFT43, WDR19, and IFT52 have been associated with CED. All known genes encode proteins that are part of the intraflagellar transport complex, which plays an important role in the assembly and maintenance of cilia. Here, we report a family with two children affected by Sensenbrenner syndrome, a 9-year-old girl and her older sister who died in infancy due to respiratory, liver, and renal insufficiency. Dysmorphic features included short stature with rhizomelic shortening of limbs, short fingers, preaxial polydactyly of left hand, narrow chest, craniosynostosis, dolichocephaly, high anterior hairline, epicanthal folds and telecanthus, depressed nasal bridge, low-set ears, and additional ectodermal abnormalities. The patient presented with chronic tubulointerstitial renal disease. She had abnormal echogenicity on renal ultrasound, reduced glomerular filtration, albuminuria and tubular proteinuria, hypocalciuria and hypocitraturia, accompanied by pre-hypertensive state. This pattern of renal abnormality was regarded as nephronophthisis. Psychomotor development was apparently normal. Molecular analysis in one of the affected individuals identified compound heterozygosity for a nonsense (c.1922T>G, p.(Leu641*)) and missense (c.2522A>T, p.(Asp841Val)) variants in WDR35. We present a detailed clinical descriptions of two female siblings showing an intrafamilial phenotypic variability of the disease, and illustrating the potential lethality of CED.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/genética , Displasia Ectodérmica/genética , Proteínas/genética , Alelos , Osso e Ossos/fisiopatologia , Criança , Cílios/genética , Cílios/patologia , Códon sem Sentido , Craniossinostoses/fisiopatologia , Proteínas do Citoesqueleto , Displasia Ectodérmica/fisiopatologia , Feminino , Proteínas Hedgehog , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Rim/fisiopatologia , Mutação de Sentido Incorreto , Polônia , Irmãos
20.
Mol Vis ; 20: 1732-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25558176

RESUMO

PURPOSE: To identify the genetic basis of achromatopsia (ACHM) in four patients from four unrelated Polish families. METHODS: In this study, we investigated probands with a clinical diagnosis of ACHM. Ophthalmologic examinations, including visual acuity testing, color vision testing, and full-field electroretinography (ERG), were performed in all patients (with the exception of patient p4, who had no ERG). Direct DNA sequencing encompassing the entire coding region of the CNGB3 gene, eight exons of the GNAT2 gene, and exons 5-7 of the CNGA3 gene was performed. Segregation analysis for the presence and independent inheritance of two mutant alleles was performed in the three families available for study. RESULTS: All patients showed typical achromatopsia signs and symptoms. Sequencing helped detect causative changes in the CNGB3 gene in all probands. Eight different mutations were detected in the CNGB3 gene, including five novel mutations: two splice site mutations (c.1579-1G>A and c.494-2A>T), one nonsense substitution (c.1194T>G), and two frame-shift mutations (c.393_394delGCinsTCCTGGTGA and c.1366delC). We also found three mutations: one splice site (c.1578+1G>A) and two frame-shift deletions that had been previously described (c.819_826del and c.1148delC). All respective parents were shown to be heterozygous carriers for the mutation detected in their children. CONCLUSIONS: The present study reports five novel mutations in the CNGB3 gene, and thus broadens the spectrum of probably pathogenic mutations associated with ACHM. Together with molecular data, we provide a brief clinical description of the affected individuals.


Assuntos
Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Mutação , Adulto , Sequência de Bases , Criança , Códon sem Sentido , Defeitos da Visão Cromática/fisiopatologia , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Mutação da Fase de Leitura , Humanos , Masculino , Linhagem , Polônia , Sítios de Splice de RNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA